Spray-assisted layer-by-layer assembly on hyaluronic acid scaffolds for skin tissue engineering.

نویسندگان

  • Isa P Monteiro
  • Anita Shukla
  • Alexandra P Marques
  • Rui L Reis
  • Paula T Hammond
چکیده

Tissue engineering approaches for the development of a single epidermal-dermal scaffold to treat full-thickness skin defects have been limited by difficulties in the fabrication of a bilayer scaffold combining the specific properties of the epidermis and the dermis. Here we present an innovative approach to developing a scaffold that holds promise for skin tissue engineering. We utilize the spray-assisted layer-by-layer assembly technique to deposit a polyelectrolyte multilayer film composed of hyaluronic acid and poly-L-lysine (the epidermal component) on a porous hyaluronic acid scaffold (the dermal component), in a rapid and controlled manner. The multilayer film promotes cell adhesion, contributing to regeneration of the epidermal barrier functions of skin. While human keratinocytes attached and proliferated on the coated porous scaffolds, they did not invade the porous dermal component, thus leaving room for seeding of relevant fibroblast cell types in this scaffold. This scaffold therefore holds promise for co-culture of different cells, which may be useful for treatment of full-thickness skin defects as well as other tissue engineering applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Poly(ε-Caprolactone), Hydrophilic and β-Tricalcium Phosphate Layer- by -Layer Nanofibrous Scaffolds for Tissue Engineering

In this study, using biodegradable polymers, nanofiberouse scaffolds were fabricated from the layer-by-layer electrospinning method, including two layer that poly (ε-caprolactone), polyvinylpyrrolidone deposited at first layer and poly (ε-caprolactone), polyvinyl alcohol , β-tricalcium phosphate at latter. After prepration of scaffolds, scanning electron microscopy (SEM), swelling, porosity, me...

متن کامل

Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering.

The field of tissue engineering and regenerative medicine will tremendously benefit from the development of three dimensional scaffolds with defined micro- and macro-architecture that replicate the geometry and chemical composition of native tissues. The current report describes a freeform fabrication technique that permits the development of nerve regeneration scaffolds with precisely engineer...

متن کامل

In Vitro Study of Hyaluronic Acid Based Scaffolds and Its Effect on Cartilage Regeneration

Recently, it has been proven that cartilage healing is difficult. The most commonly used treatments are autogenously cartilage grafting and allogeneic bone grafting, but grafts cannot fully meet treatment goals because of source, price, safety, and other concerns. Thus, a combination of biological materials and tissue engineering technology has become a recent trend in studies. Among the studie...

متن کامل

ارزیابی ساختاری و مکانیکی داربست گرادیانی پلی کاپرولاکتون به‌منظور کاربرد در مهندسی بافت استخوان

In gradient scaffolds, changes in porosity, pore size or chemical composition occur gradually. Recently, different  methods have been applied to create gradient in the scaffolds, but they have some disadvantages such as high cost and control. The main purpose of this research was to fabricate porous gradient scaffolds by a novel, functional, simple, and low-cost method. Two homogenous scaffolds...

متن کامل

Different hyaluronic acid morphology modulates primary articular chondrocyte behavior in hyaluronic acid-coated polycaprolactone scaffolds.

Scaffolds for cartilage tissue engineering should promote both adequate biomechanical environment and chondrogenic stimulation. Hyaluronic acid (HA) has been used in cartilage engineering for its chondrogenic and chondroprotective properties, nevertheless its mechanical properties are limited. Influence of HA microstructure in chondrocyte response has not been addressed yet. In this work, polyc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 103 1  شماره 

صفحات  -

تاریخ انتشار 2015